
International Standardization of the Thyroid Markers Free T4 and TSH

La Standardisation Internationale des Paramètres Thyroïdiens T4 Libre et TSH

Linda Thienpont Linda.thienpont@ugent.be

9^e Symposium bioclinique – Paris

Faculty of Pharmaceutical Sciences Department of Pharmaceutical Analysis Laboratory for Analytical Chemistry

Disclosure

Consultancy to:

Fujirebio Inc. (Europe – Japan) Siemens Healthcare Diagnostics Inc. (USA) Tosoh Corporation (Europe – Japan) Imabiotech (France)

Economic impact of thyroid testing

High burden on the healthcare system

Yearly 180*10⁶ TSH & 60*10⁶ FT4 tests performed worldwide

Testing volume might even increase

Among others, recent meta-analysis links subclinical thyroid dysfunction to coronary heart disease & "all-cause" mortality#

→Underpins the indisputable value of thyroid function testing with fitness-to-the-purpose

#Singh et al. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int J Cardiol 2008;125:41–8.

Benefits of using standardized assays

Fit to address modern clinical & public health needs

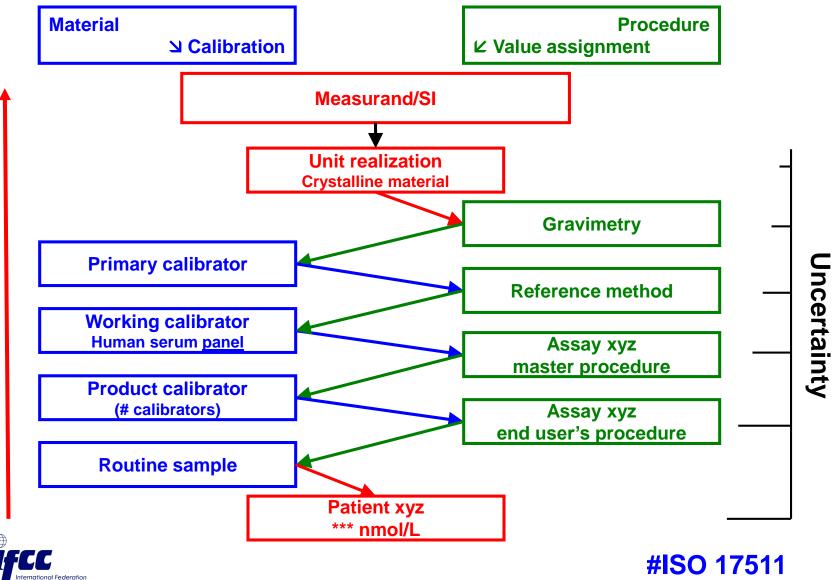
- Common reference intervals/clinical decision limits
- Evidence-based clinical practice guidelines
- Application of consistent standards of medical care
- Translation of research into patient care & disease prevention activities
- Electronic patient records with inclusion of lab data

→Whether these needs can be met, depends on the availability of laboratory results that are comparable over time, location & across assays

IFCC Working Group/Committee for Standardization of Thyroid Function Tests (C-STFT) Chair: Prof. Dr. L. Thienpont

Terms of reference

- Develop reference measurement systems for free thyroid hormones and TSH
- Establish a network of competent reference laboratories
- Liaise with key stakeholders to implement traceable methods in routine clinical practice


www.ifcc.org/ifcc-scientific-division/sd-committees/c-stft/

www.ifcc-cstft.org

Linda Thienpont - October 2015

Reference measurement system#

Traceability

of Clinical Chemistry

and Laboratory Medicine

Development of a reference measurement system for FT4

Definition of the measurand FT4

Measurand#

"Quantity intended to be measured"

IUPAC/IFCC format*

Component

Thyroxine(free)

Kind-of-Quantity (units)

Amount-of-substance concentration (pmol/L)

System Plasma/Serum under physiological conditions (pH 7.4, 37°C)

#Vocabulaire International des Termes Fondamentaux et Généraux de Métrologie (VIM) (ISO, 2007)

*Thienpont et al. Measurement of free thyroxine in laboratory medicine – Proposal of measurand definition. IFCC WG-STFT. Clin Chem Lab Med 2007;45:563–4.

FT4 reference measurement procedure

International <u>conventional</u> reference measurement procedure (RMP)# based on

- Equilibrium dialysis (ED)
- Quantification of thyroxine in the dialysate with a "trueness-based" reference measurement procedure calibrated with the certified material IRMM-468

→ED ID-LC/tandem MS

NOTE

The measurand is *operationally defined* as **"Thyroxine in the dialysate from ED of serum/ plasma prepared under defined conditions"**

#Thienpont et al. Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum. IFCC WG for Standardization of Thyroid Function Tests (WG-STFT). Clin Chem Lab Med 2007;45:934-6.

FT4 reference measurement procedure

Development & validation

Van Uytfanghe K, Stöckl D, Ross HA, Thienpont LM. Use of frozen sera for FT4 standardization: investigation by equilibrium dialysis combined with isotope dilution-mass spectrometry and immunoassay. Clin Chem 2006;52:1817-21.

Van Houcke SK, Van Uytfanghe K, Shimizu E, Tani W, Umemoto M, Thienpont LM. IFCC Working Group for Standardization of Thyroid Function Tests (WG-STFT). IFCC international conventional reference procedure for the measurement of free thyroxine in serum. Clin Chem Lab Med 2011;49:1275-81.

Development of a reference measurement system for TSH

Definition of the measurand TSH

TSH analysis is "mixture"

Component#

Human TSH – intact, total, glycosylation encountered in diagnostic applications which should be specified

Kind-of-quantity (units)#

Amount-of-substance concentration (arbitrary, mIU/L)

System# Serum/Plasma

<u>NOTE</u>: Definition requires that TSH assays deliver a measure for "total TSH" & measure the specified TSH-glycoforms in an equimolar way

#Thienpont et al. Traceability to a common standard for protein measurements by immunoassay for in-vitro diagnostic purposes Clin Chim Acta 2010;411:2058-61.

TSH reference material & -procedure

The problem

- IU defined by a WHO standard
- WHO IRP 80/558 (also 81/565) from purified cadaver pituitary; mixture components differ from those in serum; dissolved in artificial matrix, it potentially does not give the same dose/response in immunoassays as TSH in its natural environment

WHO IRP is not commutable and not suited for standardization

Reference measurement procedure for TSH
technically not to expect in the short- to midterm

Harmonization instead of standardization#

#Miller et al. Roadmap for Harmonization of clinical laboratory measurement procedures. Clin Chem 2011;57:1108-17.

TSH harmonization approach

Proposal by C-STFT

Statistical "all-procedure trimmed mean" (APTM)

- From a method comparison with a clinically relevant panel
- With participation by (as many as possible) assays

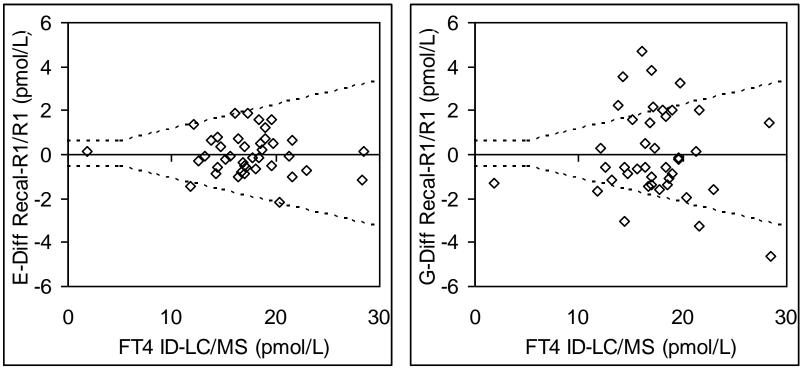
→ Serves as "surrogate RMP"¹

NOTE

- Statistical basis: robust factor analysis model²
- Requires excellent correlation of results by immunoassays to the APTM

¹Van Houcke et al. Harmonization of immunoassays to the all procedure trimmed mean - proof of concept by use of data from the insulin standardization project. Clin Chem Lab Med 2013;51:e103-5. doi: 10.1515/cclm-2012-0661.

²Stöckl et al. A statistical basis for harmonization of thyroid stimulating hormone assays using a robust factor analysis model. Clin Chem Lab Med 2014;52:965-72.



Requirements for successful standardization/harmonization

Sufficient intrinsic quality of performance

Total error vs biological limits to reflect sample-related effects (e.g., limit for FT4: 9.6%)#

Other performance attributes: imprecision, correlation, stability (within-run, between-), IQC performance

#Thienpont LM, et al. Clin Chem 2010;56:912-20.

"Step-up" approach#

Familiarization phase¹

- First method comparison with high-volume sera from "apparently healthy" volunteers
- Assessment of assays' basic performance attributes
- Mathematical recalibration

First step-up²

- Second method comparison with a clinically relevant panel and inclusion of master calibrators
- Verification that assays perform similarly on clinically relevant samples
- Recalibration by IVD manufacturers

#Van Uytfanghe et al. Clin Chim Acta 2014;432:62-67. ¹Thienpont et al. Clin Chem 2010;56:912-20.

²Thienpont et al. Eur Thyroid J 2014;3:109-16.

"Step-up" approach

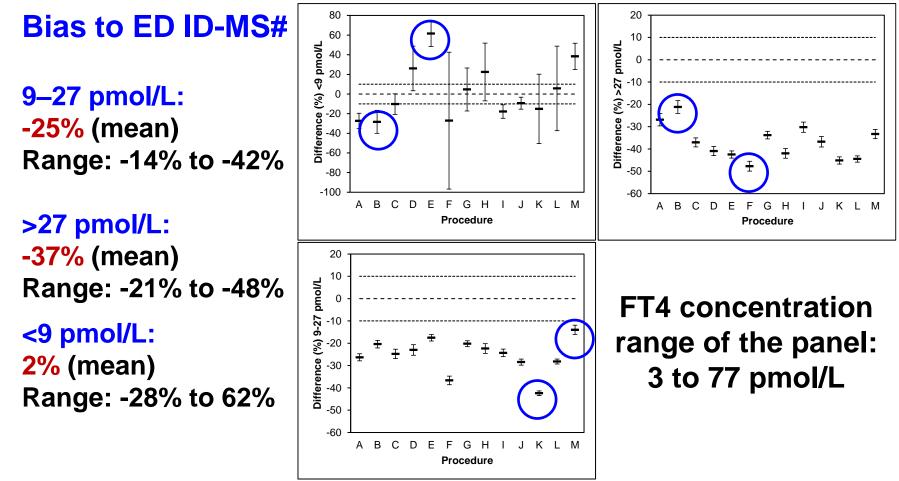
Second step-up

- Final method comparison with a new clinically relevant panel
- Technical recalibration of IVD assays

Phase after standardization/harmonization#

- Procure a follow-up panel
- Assess sustainability of the status achieved after technical recalibration of IVD assays (= risk analysis implied by the FDA)#
- Prepare implementation of standardization/ harmonization

#De Grande LA et al. Clin Chem Lab Med 2015 Jan 15 doi: 10.1515/cclm-2014-0959.



Status of standardization of commercial FT4 and TSH assays

Standardization status – FT4

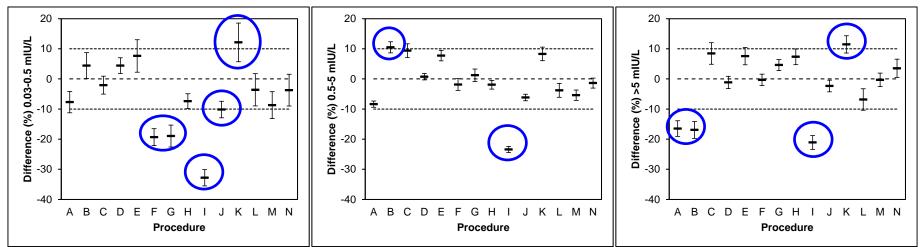
→All assays strongly negatively biased

#Thienpont et al. Eur Thyroid J 2014;3:109-16.

rnational Federatio

of Clinical Chemistry

Linda Thienpont - October 2015


Standardization status – TSH

Bias to APTM#

ernational Federatio

nd Laboratory Medicine

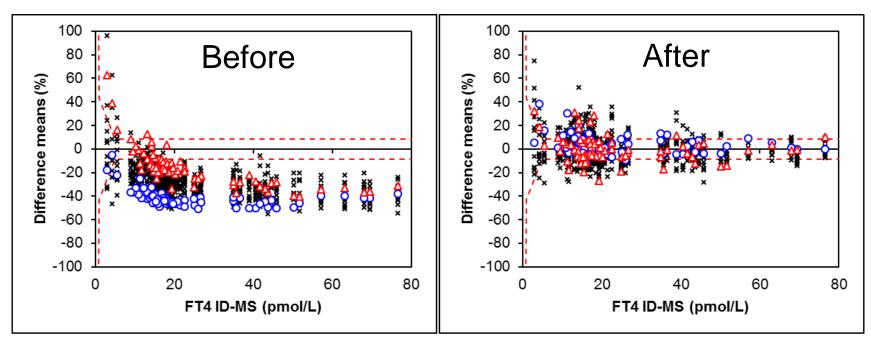
of Clinical Chemistry

TSH concentration range of the panel: 0.04 – 80 mIU/L

- →0.5 5 mIU/L: comparability quite good; only 2 assays differ by >10% from APTM
- → <0.5 mIU/L & >5 mIU/L: max 5 out of 14 assays outside the ±10% limit

→ Max discrepancy between assays up to ~33% (whole range)

#Thienpont et al. Eur Thyroid J 2014;3:109-16.

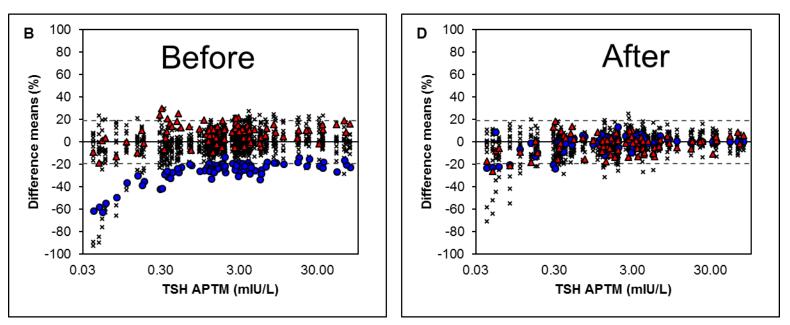

Feasibility of standardization/harmonization

Linda Thienpont - October 2015

Feasibility of standardization/recalibration

FT4#

→Bias to ED ID-LC/tandem MS removed→Residual dispersion nearly entirely due to withinassay effects


#Thienpont et al. Eur Thyroid J 2014;3:109-16.

Linda Thienpont - October 2015

Feasibility of standardization/recalibration

TSH#

→ Recalibration nicely centers the distribution of the assay differences around zero → Remaining dispersion from within-assay effects

#Thienpont et al. Eur Thyroid J 2014;3:109-16.

of Clinical Chemistry

Project status and way forward

Step-up to standardization/harmonization

Phase IV method comparison study

- Collection of new clinically relevant panels, to measure in parallel with master calibrators:
 - FT4: 4.5 164 pmol/L (by ED ID/MS), n = 91
 - TSH: ~0.002 to 75 mIU/L (APTM), n = 101
- Measurements were done last May
- Preliminary report is discussed with the IVD manufacturers
- Recalibration by manufacturers is currently ongoing
- Final data treatment and manuscript will follow

Preparation of follow-up panels

- TSH panel is ready (and targeted)
- FT4 panel is almost collected (will be targeted)

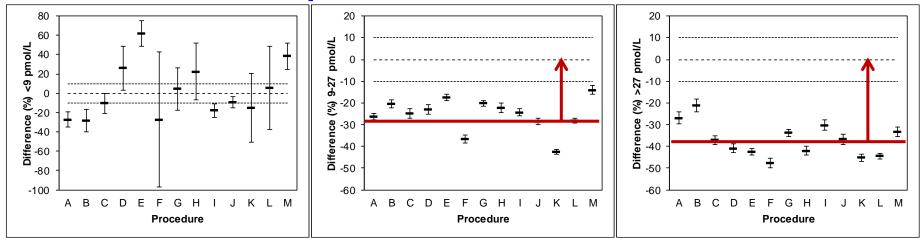
Proof-of-concept

Reference interval (RI)

- Panel of 120 samples from apparently healthy Americans to be measured by recalibrated FT4 and TSH assays
- FT4 target values assigned by ED ID-LC/tandem MS at UGent

Proof-of-concept for standardization/ harmonization and feasibility to use a common RI

Basis for further establishment by manufacturers of new RIs after standardization/harmonization



Implementation

Obstacles to implementation

Impact of standardization

Most pronounced for FT4 testing mainly in the eu- & hyperthyroid range Measurement values will increase in general by 30 – 50% Reference intervals will change

Linda Thienpont - October 2015

Measures to waive obstacles

Prior to implementation

- Liaise with regulatory authorities (new FDA 510k clearance)
- Liaise with key stakeholders
- Do risk-benefit analysis at all levels of stakeholders
- Educate stakeholders about impact/changes
- Coordinate implementation of standardized/ harmonized assays by all manufacturers at the same point in time and worldwide
- Monitor sustainability of standardization status

Collaborating IVD manufacturers Abbott RECKMAN DiaSorin BIDMÉRIEUX COUNTER The Diagnostic Specialist UJIREBIO mindray maccura SIEMENS **Ortho Clinical Diagnostics** Roche Siemens Healthcare Diagnostics Snibe TOSOH

